
P,.,juc reorl-i; bu!cen for %nis coilention of informration is etited 10e iC aeralge I hourf Per resoor-se. flinucing x"e time for reviewing ins%,uunions. searcng est n cant, ources.
athering and maintaining the data needed. and con'oieling and reie-n.9 Irne collection of information. Sena comments reoarding this burden estimate or any ot her aspect of ths
Soliecton of information. including srrggetlions for reducing this avrCen. to irashington r4eaoauarters Serice%. Directorate for informnation Operations and Atoorts. 1215 Jetferson
Cav&H9igway. Suite 12C4. Arlington. VA 22202-4302. and to the office of F.tanagemen and Budget, Paperwork Reducio onfject (0704.0189). Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2.REPORT DATE I3. RJEPO BT TYPE AND DA TE. COVERED

4. TTLE AND UBTTLEMay 1, 1994 I F in I, eptem ber 1 993-February7, 1994

Studies of Wave Propagation in Nonlinear Composite Materials G:NOO0l4-93-l-G033

6. AUTHOR(S)

Chiu T. Law

7. RPFORMi G ?8GANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONJuonns HopKins 1nl versi ty REPORT NUMBER
Homewood-Research Administration
105 Ames"Hall, 3400 N. Charles Street
Baltimore, MD 21218-2686

9. SPONSORING i MONITORING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORING i MONITORING

Contracting Officer AGENCY REPORT NUMBER

Naval Research Laboratory
4555 Overlook Ave., S.W.
Washington, DC 20375-5000

11. SUPPLEMENTARY NOTES 1 9 0 1 4

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited Availability

13. ABSTRACT (Mlaximu w200 words)
This project involves the investigation of the wave propagation in nonlinear
composite media. This effort demonstrated theoretically that we can form a
composite medium from a nonlinear medium with optical vortex soliton (OVS).
The light-induced waveguide formed by the OVS can be a means for building an
all-optical modulator. The dynamics of polarized OVS is also examined and
remarkable evolution of instability emerges.

erson

1/f tM ' y "Wltii

14. SUBJECT TERMS 15. NUMBER OF PAGES
nonlinear wave propagation, all-optical modulator, 22
optical vortex soliton 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified __________

NSN 7540-01-2130-5500 Standard Form 298 (Rev. 2-89)

1jrr'1,bed by AN~f Sld 139-18



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.



Final Technical Report
Grant No.: N00014-93-1-G033

Studies of Wave Propagation in Nonlinear Composite Materials

Department of Electrical and Computer Engineering
Johns Hopkins University

Baltimore, MD 21218

Submitted to

Department of the Navy, Naval Research Laboratory
Scientific Officer: Dr. Anthony Campillo

by
Principal Investigator:

Dr. Chiu T. Law

Project Period: September 7, 1993 - February 7, 1994

May 1, 1994

1



1. Summary
This project involves the investigation of the wave propagation in nonlinear composite

media. Works were mainly concentrated on obtaining analytical and numerical solutions of the
(2+1)-D nonlinear Schr6dinger equation, which accurately models nonlinear wave propagation.
This effort demonstrated theoretically that we can form a composite medium from a nonlinear
medium with optical vortex solitons (OVS). These spatial solitons actually induce ideal
waveguides within the nonlinear medium. What is more, the characteristics of these waveguides
may be dynamically controlled with all-optical means. Through computer simulations, we
showed that a waveguide modulator whereby an optical vortex soliton induced a cylindrical
waveguide within a self-defocusing medium and another beam beam was used to modulate the
refractive index within a small region of the waveguide. On the fundamental understanding of
dark solitons with two transverse degrees of freedom, we have studied polarized OVS's. We
have found that only circularly polarized OVS's are stable and other polarized OVS's are
susceptible to long period of spatial perturbation. What is remarkable here is that an unstable
polarized OVS exhibits striking decay dynamics. To perform the above research, we have
developed a program for solving vector nonlinear Schr6dinger Equation. The results of this
project have been shared with Dr. G. A. Swartzlander, Jr., 0. N. T. Postdoctoral Fellow, and Dr.
A. J. Campillo, Senior Research Scientist, both of the Naval Research Laboratory and have been
presented in various national conferences.
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2a. Polarized optical vortex solitons

Linear vortices are already known to play a fundamental role in the scattering of radiation
and in waveguides, where the vortex is characterized by the separable function of the azimuthal
coordinate: exp(iMo), and M = +1, +2, ... is the so-called topological charge. Cylindrical
symmetry allows various polarization modes, e. g., transverse-electric, transverse-magnetic, and
circular. One may expect nonlinear optical vortices, which also have cylindrical symmetry, to
exhibit interesting polarization dynamics owing to the symmetry-breaking effect of an
anisotropic light-induced refractive index change. We have discovered that out of six
characteristically different polarized vortex states, only the circular polarized waves are stable.
What is also remarkable is that the decay dynamics of the other five modes exhibit two striking
phenomena: (1) the initial vortex core vanishes and then re-emerges with the opposite
topological charge, and (2) additional pairs of vortices are generated (while preserving the net
topological charge).

The propagation of polarized light in a nonlinear refractive medium is described by the
paraxial wave equation,

i2koaE/ z + [a2x2+ 2/9y2] E+kD 3 NLo 0  (1 a)

where no is the linear refractive index (assumed isotropic), ko is the wave number inside the
medium directed along the z-axis, and E is the electric field. The electric displacement for a
Kerr nonlinear medium is given by,

-.-L = _ 4* .- -4 . -.,
D =2n 2 so[A(E'E )E+B(E'E)E ] (lb)

where n 2 is the nonlinear refractive index coefficient for linearly polarized light field, and, for a
lossless medium, B = 1 -A is a measure of the light-induced anisotropy. In a self-defocusing
medium, n2 is neative, and the intensity-dependent refractive index is given by n =n 0 -7

where An - 1n21 E(x,y,z)'E (x,y,z).
It is naturally convenient to decomposed E into two circularly polarized components:

E= V(x,y)exp(-i2Z), V= ER uR(x,y) e + EL uL(x,y) eL] where eR = 21/2 ( - i1) and

eL =2 -1/2 ( y+i) are the unit vector for the right (R) and left (L) circularly polarized
components respectively, ER and EL are the values of the background field amplitudes of each
circularly polarized component, . and ) are transverse unit vectors, UR and UL are the normalized
amplitude profile of the field, Z=z/L! is the normalized propagation distance
[L1 =2ko1 (n0/An)], and An- is the index change attributed to the background field. We
ignore small field components in the i direction that occurs for transverse magnetic waves.
From Eq. (I a) and (1b), two coupled nonlinear Schr6dinger (NLS) equations are obtained:

2uR + iauR/ Z + uR -2 [( l-B) uR R + l+B) I UL L uR =0 (2a)

2uL + iauL/aZ + U -u -2 [(1-B) UL LrI + (l+B) IUl1Rl R]UL =0 (2b)

where V_.= D2/8X 2 + 2/Y 2 , TiR=ER/ IE _ I and 11L=EL/IE_-I give the fraction of energy in
each polarization state (IE,, I= (E2 +E2)l/2), and (X,Y)=(x/L:,y/Lj) are the normalized
transverse coordinates (L =2k6' (n 0/An ) /2).

The scalar NLS equation may admit vortex solutions of the form uM(p, )= l(p)exp(iAlo),
where p = (X2 + y 2 )1/2 and 0 is the azimuthal coordinate in the transverse plane. Now we can
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inquire whether polarized waves allow stable vortex modes in a self-defocusing medium. An
arbitrary vortex field, V, may be composed by superimposing a pair of right- and left-handed
polarized vortices of topological charges M and N, e. g., V = ERUMR+ELUN L. From this
infinite selection of modes, we examine the most fundamental, namely, those with unit charge
(M, N =+ 1) whose polarization components are either equal in amplitude (ER = EL) or
dominated by one (e.g,. _L = 0). This allows us to identify six polarized vortex modes of special
significance: "linear" VLin = ERUM(e'R+eL), "circular" VCir =_.RUMeR or ELUMeL, "radial"

V_ ad = ER(U I R + u 1 e_,) = 212 ERV(p) P, "radial-compliment" V§-d = ER(uI eR + u IeL), "0"

V= ER(u 1 eR - U 1 e L) = 21/ 2exp(-ih/2)ERW(p)p, and "o-compliment" V =
ER(u-lR-u 1 eL). Note that for circularly polarized waves An-=An2ERL whereas other

polarizations under investigation have An= =n2 (ER +EL). While many other modes involving
higher or mixed charges and elliptical polarization will not be treated here, one may expect that
the results of the following stability analyses can provide enough insight to allow at least
qualitative descriptions for other cases.

,," ,... .. -- Fr 2.1

0.2

I -

0.1"-

0
0 20 40 T

Fig. 1. Instability growth rates as a function of normalized modulation period, T. The calculated
initial growth rate, F, is shown for radial perturbations (dashed). The average growth rate, y, is
calculated numerically (data points) and fitted (solid) to Eq. (4) with a single parameter. For
both cases we set the radial vortex core size to r0 = 25nm, the modulation amplitude to s = 0.1,
and material parameters to An /no = 2x10 - 5 and B = 1/3. The initial growth rate, F, is roughly
2.1 times the average rate, 7.

To determine whether these six vortex modes are stable, we perform a linear stability
analysis for each of them. We find out that the propagation constant F for these perturbed modes
can be expressed as a function of normalized spatial frequency k =-2xr/F or normalized spatial
period T (in physical unit, the period is t = TL1 ):

F=+ik1 (k1 + 2A) 1/2, +i(2 +k2_)l/2 for circular polarization (3a)andF=ikk4+2)1/ 2 , +(4 k2 ) 1/ 2

and F = +ik (4 + k) +k.(4B -k for the remaining five polarizations. (3b)

Note that only the last expression in Eq. (3b) may be real under certain conditions. Therefore
the circular polarization cases are stable to radial perturbations, owing to the fact that F is always
imaginary. This is not a surprise since the NLS equation for the circular polarization case is
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identical in form to the scalar NLS equation, the latter has already been found to be stable (both
in theory and practice).

On the other hand, the remaining five polarization states admit an exponential growth of the
perturbation. This may have been expected since it is known that elliptically polarized plane
waves are also unstable under cross-phase modulation. From the last expression of Eq. (3b), we
notice that the vortex is unstable whenever ki<kcr = 2B 1/2 (i. e., whenever the physical period of
modulation exceeds tcr = 7rL4B-11 2). The growth rate of instability in the last expression of Eq.
(3b) can be written in terms of T and Tcr:

F= 4B (I -Tcr/T)" 2 Tcr/T. (4)

The growth of the instability peaks at Topt = N-2fTcr = 7.7, as depicted in Fig. 1, is a plot of Eq. (4)
for B = 1/3. Since perturbations used in the linear stability analysis preserve the cylindrical
symmetry of the initial vortices and maintain zero field at the center of the vortices, they may not
be the dominant mode causing the strongest instability.

We have used numerical methods to perform a more rigorous nonlinear instability analysis
which allows not only the determination of growth rates, but also qualitative information on the
decay process. For numerical convenience, we have examined a sinusoidal perturbation along
the x-axis:

E=ER [uM + F sin(k.X)R + EL [u M- sin(kX)] eL (5)

where we set the amplitude of modulation to , = 0.1, and M = + 1. The perturbation modulates
each of the circular components with the same frequency kj, but nt out of phase.

The decay dynamics from these modulations have been investigated by numericall solving
Eq. (2) with the beam propagation method. A vortex (with core radius ro-LJ/ 2 =25 n)
having one of the five polarizations under consideration is subjected to periodic modulations
(t = 1.0ram) on a 512x512 transverse grid, and a moderate nonlinearity of An -/n 0 =2.0x10- 5 is
assumed in a medium with B = 1/3 at a wavelength of 1 [rn. Under these conditions the
nonlinear scaling size, L1, corresponds to 5 pixels in our computations. The dynamic features
for each of the five polarizations are very similar. Therefore, we present here only calculations
for azimuthal polarization, V0. The intensity and phase evolution are shown in Figs. 2 and 3,
respectively, at different propagation distances. The gray-scale palette maps small values of
intensity or phase (modulus 2nt) into dark tones; a logarithmic (linear) scale is used for intensity
(phase). These cross-sectional images span only 12% of the computation grid area. The left-
handed circular component resembles the corresponding right circular component after it is
rotated in the x-y plane by 900 about the center of the initial vortex; thus it is not shown.

As expected, these figures show that the perturbation has clearly destroyed the circular
symmetry of the vortex located at the origin (x=y=0). Remarkable and unexpected dynamics
occurs as the beam propagates. For example, in (B) of Figs. 2 and 3, the vortex core has
completely vanished! Instead, a 7c phase front resembling a dark soliton segment is formed in
the vicinity of the origin. (This may be interpreted as a topological vortex that osculates the x-y
plane, and thus, does not actually violate the conservation of charge principle.) Also note that
although the vortex itself has disappeared, the global phase continues to have the same sense of
rotation (counter-clockwise). As the beam proceeds further to (C) in Figs. 2 and 3, three vortices
develop, with the central one at the origin having the opposite topological charge of the initial
vortex, i.e., its sense of rotation has reversed! The two "new" vortices have the same charge, and
thus, the net vorticity (YMi) is the same as the initial condition. (This may be interpreted as a
single vortex filament or "string" passing through the transverse plane three times.) The
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complexity appears to develop more quickly as more vortices are generated, as evidenced in
frame (D). In this case, the vortex filament osculates the x-y plane in several locations; a short
distance further, seven vortices appear. As the beam proceeds further, one may expect that
nonlinear optical turbulence will eventually develop.

-(A) 1 > (B (C) Y LY
X .. X'} 4'1

Fig. 2. Transverse intensity profiles of the right-hand circularly polarized component of a
transverse electric vortex mode (core radius Ro =25.n, nonlinearity AnNL/nO=2.0x10- 5 )
perturbed by a modulation with an amplitude 10% of the beam intensity and a period of 1mm at
Z=0 (0 cm), 5.9 (9.4 cm), 7.5 (11.9 cm), and 11 (18.2 cm) in (A), (B), (C) and (D) respectively.

Fig. 3. Same as Fig 3, except phase is shown (black corresponds to zero phase, and white to 2r).
The global vorticity has a counter-clockwise sense. The vortex core is absent in (B) and (D);
instead 7r phase fronts exist and the corresponding intensity profiles show dark soliton segments.

In general, the vector vortex dynamics may be interpreted as two co-linear vortex filaments
of opposite circular polarization that unravel (owing to cross-phase modulation) as they
propagate through the self-defocusing medium. If one of the polarized filaments is absent or if
the nonlinear coupling is "turned off', stable propagation is expected from the scalar theory. If
both polarization modes are present, their coupling effect will depend on the relative power in
each mode, as well as the material parameter, B. For a given value of B, we expect the strongest
coupling when the two modes have equal strength, i. e., the five unstable modes described above.
Based on these results, one may expect spontaneous vortex formations that appear as closed
loops in three dimensions, which may occur when a plane wave of arbitrary polarization (though
not circular) is perturbed at different periods along both the x- and y-axes.

Possible impact of these research results is a potential scheme for making a polarization
sensitive all-optical switch. For example, a light-induced waveguide is formed in a right
circularly polarized beam with an OVS. Another low intensity probe beam with different color
can be guided along this light-induced waveguide along the dark core of the OVS. If another
gate probe with the same frequency but different different polarization is introduced to the
guiding beam, the polarized OVS may become unstable. As a result, the guided probe beam will
be switched off owing to the disintegration of the light-induced wavelength.
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2b. All-optical modulator
Besides the all-optical switch making use of polarization effect, another idea is to exploit

the property that the size of the light-induced fiber ("light pipe") changes with the intensity of
the bright region of the guiding beam. Since an OVS has a core radius r o -=_ /L1 -2 where
L.= 2ko-1 (no/An _)112, n-o =n 2 IE_ I sup2 and E_ is the background field, the radius of an OVS
is proportional to 1/IE-i. By squeezing and relaxing the "light pipe", we can encode
information into the flow of the wave. Therefore, we can achieve this by modulating the
intensity of the bright region. We can easily introduce modulations to the guiding beam by
sending a control beam to it. Consequently, whatever signal is present in the control beam will
be transported to the guided light. Fig. 4 displays the relations among the guiding beam (with an
OVS), the guided probe beam and the gate beam as well as the increase in An- owing to the
gate beam.

Z

T Guided beam
gue bGaLe beam applied hereguidedmbeam

gate signal I guiding beam

An, with an OVS .>

> Z Guiding beam with OVS
Fig. 4. All-optical modulator based on the intensity-
dependent core size of an OVS. The core size as well as Fig. 5. Pinch-off of the light-induced
the probe beam guided by the OVS inside a guiding beam waveguide (OVS). Observe that
is modulated by the gate signal after passing through the gate beam.

the guided beam (the upper picture)
radiates and dissipates while the
OVS in the guided beam (the lower
picture) returns to original size.

Owing to the reduction in the the dimension of the waveguide, portion of the guided beam
must radiate out. If the change in An- is abrupt, a substantial percentage of the guided beam
can escape from the waveguide. Our prediction is confirmed by results of numerical simulations
of a guiding beam with ro =25ktm and nominal An =2x10 - 5 . Fig. 5 shows the topview (along
the propagation direction) of a guided beam with intensity 0.001 of the OVS's background
intensity and a guiding beam with an OVS ("light pipe") in one of our computer simulations
where a gate beam is directed to the guiding beam perpendicularly. The gate beam causes An -
to increase to 6x10- 4 The cross section of "light pipe" shrinks abruptly for the portion of
guiding beam under the influence of the gate beam, and relaxes to original size when the effect
of the gate beam diminishes. The shrinkage of the "light pipe" blocks off a portion of the
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power of the guided beam. As a result, the guided beam is invisible after traversing the gate
beam. This is analogous to the pinch-off effect happening in the channel ("light pipe") of a
field effect transistor.

We have also examined the dynamics of the guided pulse under different levels of gate
beam power. Fig. 6 shows the the simulation results of applying various gate signal intensities
around the longitudinal distance between 9.1Z 0 and 9.2Z 0 . The different gate intensities result
in An- varying from 10- 4 to 8x10 - 4 . As the gate power increases, the guided power within the
longitudinal region enclosed by the gate beam jumps up. After the longitudinal region,
background intensity of the guiding beam returns to nominal value and so does the OVS's core
radius. This change in the waveguide geometry leads to the leakage of the guided radiation and
the drop in guided radiation within a circular aperture of radius =2r 0 . Fig. 6 demonstrates that
the transmission coefficient of the guided beam, which measures the amount of radiation passing
through the circular aperture, reaches a steady and lower value at a distance of 9.4Z0 , i.e 0.2Z 0
away from the gate beam region. This steady value of transmission coefficient after the gate
beam decreases almost linearly as the change in nonlinear refractive index increases.

An = 1()4
An .10.4

00

1.2 An= - 4x10
An =6x10 4

0 An =8xlO -- "

0.8 ..

- - -------------------------

0.4
9 10 11 12 13

Propagation distance (Z 0)

Fig. 6. Transmission coefficient of the guided beam through a aperture with radius 2r 0 versus
the propagation distance. The gate beam locates at the distance between 9.1Z 0 and 9.2Z0 .

2c. Propagation program for vector nonlinear Schr6dinger equation
We have extended a program, which was developed to simulate 3 dimensional nonlinear

wave propagation, to solve the vector nonlinear Schr6dinger equation in Eq. (2). We have
ported the program to Cray C-90 supercomputer. As a result, it takes less than 3 minutes of cpu
time to simulate optical wave propagation to a distance of three diffraction length. The results of
each run are usually stored as many frames of pictures with typical resolution of 512 x 512 pixels
in HDF (Hierarchical Data Format) which is developed by the National Center for
Supercomputing Applications. This image storage format reduces the storage space

8



substantially. Various programs have been implemented for processing the resulting images and
format conversion.

The core of the nonlinear propagation code is based on the split-step method (or beam
propagation method). This numerical technique was originally used to solve the scalar nonlinear
Schr6dinger equation at a given transverse plane by splitting each numerical step into a linear
half step without nonlinearity and a nonlinear half step without diffraction. We modify it here to
solve Eq. (2) which consists of two coupled nonlinear Schr6dinger equations. The nonlinear
phase correction is computed in real space whereas the linear phase contribution from diffraction
is computed in the Fourier transform plane. Therefore, the electric field is transformed into
Fourier components during the linear step and is transformed back into real space during the
nonlinear step. These transformations are carried out by the fast 2D FFT (Fast Fourier
Transformation) on the Cray C-90. Since the version of FF1 on the Cray supercomputer are
highly optimized, results can be obtained from simulations using the code in a very short time.

The listing of the new nonlinear propagation program can be found in Section 3. This code
can be run on other UNIX workstations with the IMSL mathematical library and the HDF library
installed.

9



3. Listing of the nonlinear propagation program

We list here the beam propagation program (called non2beam.F) for solving vector
nonlinear Schr6dinger equation in Fig. 7. Non2beam.F can simulate nonlinear propagation of
the circularly polarized components of a beam with arbitrary polarization or nonlinear co-
propagation of 2 beams with different frequencies. This program requires an input data file
which is listed in Fig. 8 (called non2beam.dat) which contains data for the nonlinear
propagation. On a Cray C-90 supercomputer with UNICOS system, the program is compiled by
issuing the following command:

cf77 -o run non2beam.F -ldf

where the "-ldf" flag is for the library of HDF subroutines (at the Pittsburgh Supercomputing
Center, this library is put in /usr/local/lib/libdf.a which is in the automatic search path of cf77.
Cray supercomputers at other locations may put it under other directories.) On a typical UNIX
workstation, the program can be compiled by issuing the following command:

f77 -O -o non2beam non2beam.F -ldf -lims110

where the flags "-ldf" and "-limsllO" are for the libraries of HDF subroutines and IMSL
subroutines, e.g. f77 looking for libraries with names libdf.a and libimsll0.a under its regular
search path. After compilation, the program can be executed with the following command:

non2beam < non2beam.dat >> non2beam.dat

This command appends output information to the input file input.dat. Other output files are
specified in non2beam.dat.

Fig. 7. Listing of the nonlinear propagation program non2beam.F

program non2beam
c
c Program for solving 3D nonlinear Schrodinger equation
c with beam propagation method for two beam
c
c define polar for decomposed a beam into circular components
c

parameter (mx=512, md=mx+l, my=512)
#ifdef cray

parameter (ntable=l00+2*(mx+my), nwork=4*mx*my)
#else
#ifdef sgi

parameter (ntbl=30+my+mx, ncp=2*mx)
#else

parameter (ntbl=15+4*mx,ncp=2*mx)
#endif
#endif

complex u(md,my) ,phX(mx) ,phY(my) ,cpxi,prox,proy,dem,optnon
complex phlin(md,my), temp, tmpo(8), u2(md,my), temp2

#ifdef cray
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real table(ntable), work(nwork)
#else
#ifdef sgi

complex wffl (ntbl)
real cpy(ncp)

#else
real wffl(ntbl), wff2(ntbl), cpy(ncp)

#endif
complex work(inx,my)

#endif
integer if lag
character filnam*l8,filnam3*.18,ch*20,ansl*l,ans2*l,filnam4*18
character filnam2*18, filnam23*18, filnam24*18

c
c Default value for some of the inputs
c

data wlam,wid,eps,sclx,scly,zl Il.e-6, 1.e-4, l.e-3,l., l.,O./
data isig,ipr,nfrm /-1,5,1/ filnam3 /'ft.d'I filnam4 /'ifr.hdf'/
data zinit /0./ refn0/l./ filnam,23 /'ft2.d'/ filnam24 /'ifr2.hdf'/

c
c Skip the first line in the data file
c

2 format(ilO)
3 format(e20.13)

read(5, *)
read(5,l) filnam
read(5,l) filnam2
read(5,l) ansi
if (ansi .eq. 'y') then

read(5,l) ch
if (ch .ne. ')read(ch,2) nfrm
read(5,l) ch
if (ch .ne. ")read(ch,3) zinit

else
read(5, *)
read(5, *)

endif
read(5,5) e2n

5 format(70x,e20.13)
iflag = 0
if (abs(e2n) .1t. l.e-30) iflag=l
read(5,l) ch
if (ch .ne. ") read(ch,3) wlain
read(5,l) ch
if (ch .ne. ") read(ch,3) wid

c
c Get the scale factor for the x and y range
c

read(5,l) ch
if (ch .ne. ' )read(ch,3) sclx
read(5,l) ch
if (ch .ne. ' )read(ch,3) scly
read(5,l) ch

1 format(70x,a)
if (ch .ne. ")filnam3=ch

#ifdef cray
open(unit=3, file=filnam3,status='unknown' ,access='direct',



1 recl=128, form='unforrnatted')
#else

open (unit=3, file=f ilnam3, status ='unknown' , access='direct' ,
1 recl=16, form='unforratted')

#endif
read(5,l) ch
if (ch .ne. ")filnam23=ch

#ifdef cray
open(unit=7,file=filnam23,status='unknown',access='direct',
1 recl=128,form='unformatted')

#else
open(unit=7,file=filnam23,status='unknown',access~'direct',
1 recl=16, forxn='unformatted')

#endif
=i 4.*atan(1.)

pi2 =2.*pi

C

c e2n -- n2*IE0I^2/n0
c refn0 - linear refractive index
c isig -- sign of nonlinearity
c xrag -- positive range of x in meter, [-xrag, xragl
c yrag -- positive range of y in meter, [-yrag, yrag)
c zrag -- final propagation distance z/zo
c wlam -- wavelength in meter
c wid -- beam width in meter
c eps -- error control
c pratio -- power ratio of beamn 2 to beami
c couple -- coupling coef. between beami and beam2 (l+b)/a
c

read(5,1) ch
if (ch .ne. " read(ch,3) refn0
read(5,l) ch
if (ch .ne. ") read(ch,2) isig
read(5, l)qh
if (ch .ne. ") read(ch,3) zrag

#ifdef cray
open(unit=2, file=filnam,status='old , form='unformatted',
1 access='direct' ,recl=128)

#else
open~unit=2,file=filnam,status='old',form='unformatted',
1 access='direct' ,recl=16)

#endif
read(2,rec=l) nx, ny
xrag = sclx*wid*0.5*sqrt(nx*pi)
yrag = scly*wid*0.5*sqrt(ny*pi)
wnum = 2.*pi/ wlam
xlen = xrag/wid
ylen = yrag/wid
zo = refn0*pi*wid**2/wlam
zdist = zrag * 0.25
write(6,6) xrag,xrag, yrag, yrag,zdist,zo,wnun

6 format(" x/wid range [-",e14.7,'- m, -",e14.7," in);

1 "y/wid range [-,e14.7," mn, ",e14.7,", m"P z/4/Zo is
1 ,flO.3," (Zo ",e14.7," mn); wavelength number - ",el4.7

read(5,l) ch
if (ch .ne. '1read(ch,3) eps
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ntot =nx~ny

nx2 = fx + 2
ny2 =ny + 2
f nx = fx
f ny =ny

nxd2 = fx I2
nyd2 =ny /2
cpxi =(0.4.)

deix = 2.*xlen/nx
dely = 2.*ylen/ny

c

c delz is small enough so that the linear phase <= pi/2
c

delz = min(l./(float(nx)/sclx**2+float(ny)Iscly**2),eps)
iter = int(zdist/delz) + 1
write(6,20) iter

20 format(' number of iterations estimated = ,i5)

read(5,l) ans2
if (ans2 .eq. 'y') then

read(5,l) ch
if (oh .ne. ") filnan4 = h
read(5,l) oh
if (oh .ne. ") filnam24 = h

0

o define reference level
0

rlv = 0.5
else

read(5, *)
endif
read(5,l) oh
if (oh .ne. ')read(ch,2) ipr
majlp = iter/ipr
if (mod(iter,ipr) .ne. 0) then
majlp =majlp + 1
iter =majlp*ipr

endif
0

c Get beginning distance and ending distance
0

read(5,l) oh
if (oh .ne. )read(ch,3) zl
read(5,5) pratio
read(5,5) couple
write(6,27) zl, e2n, pratio, couple

27 format(" z1 = 'I,e14.7, "nonlinearity =",e14.7/

1 "power2/powerl = ",e14.7," coupling coef. =",el4.7)
zst =zl * 0.25
delz =zdist/iter

write(6,25) nx,ny, iter~delz, ipr,eps
25 format(lx,i5,' x ',i5,' x-y dimension, ',

1 ' number of iteration ',i5//' dz ',e14.7' write '

1 i5,' frames with tolerance < ',e14.7)
0

o compute linear propagation in x direction
0

if (iflag .eq. 1) then
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prox = cpxi*delz* float (majlp) *(pi/xlen) **2
else
prox = cpxi*delz*(pi/xlen)**2*0.5
endif
phX(l) = 1.
phX(nxd2+l) = exp(prox*(nxd2)**2)
do 30 i =2, nxd2
phX(i) =exp(prox*(i-1)**2)

30 phX(nx2-i) = phX(i)
c

c compute linear propagation in .y direction
c

if (iflag .eq. 1) then
proy = cpxi*float(majlp)*delz*(pi/ylen)**2
else
proy = cpxi*delz*(pi/ylen)**2*0.5
endif
phY(l) = 1.
phY(nyd2+1) = exp(proy*(nyd2)**2)
do 40 i =2, nyd2

icix = i - 1
phY(i) = exp(proy*idx**2)

40 phY(ny2-i) = phY(i)
do 50 j =1, ny

do 50 i =1, nx
50 phlin(i~j) =phX~i)*phY(j)

zprop = 0.
dntot = 1. /float(ntot)

c
c recompute phX phY for later use
c

prox = cpxi*(pi/xlen)**2
phX(l) = 0.
phX(nxd2+l) = prox*(nxd2)**2
do 53 i 2, nxd2

phX(i) =prox*(i-l)**2

53 phX(nx2-i) = phX(i)
proy = cpxi*(pi/ylen)**2
phY(1) = 0.
phY~nyd2+1) = proy*(nyd2)**2
do 51 i =2, nyd2

idx = i - 1
phY(i) = proy*idx**2

51 phY(ny2-i) = phY(i)
c
c get initial field distribution
c

idx2 = ntot*(nfrm-~l)/8 + 1
do 10 i = 1, ntot-7, 8
idx2 = idx2 + 1

10 read(2,rec=idx2) (u(mod(i+k,nx)+l, (i+k)/nx+l),k=-l,6)
close (2)

#ifdef cray
open(unit=4, file=filnam2,status='old' ,form='unforrnatted',
1 access='direct' ,recl=128)

#else
open(unit=4, file=filnam2,status='old' ,forxn='unforrnatted',
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1 access='direct' ,recl=l6)
#endif

idx22 = ntot*(nfrm-l)/8 + 1
do 310 i =1, ntot-7, 8
idx22 = idx22 + 1

310 read(4,rec=idx22) (u2(mod(i+k,nx)+l, (i+k)/nx+l),k=-1,6)
close (4)

#ifndef cray
#ifdef sgi

call cfft2di(nx~ny,wffl)
#endif
#endif

if (ansl .eq. In') then
c
c split2 routine'
c

do 210 i = 1, ny
do 215 j = 1, nxd2

temp = u(j,i)
temp2 = u2(j,i)
jnx2 = j+nxd2
u(j,i) =u(jnx2,i)

u2(j,i) =u2(jnx2,i)

u2(jnx2,i) = temp2
215 u(jnx2,i) = temp
210 continue

do 220 j = 1, nyd2
do 225 i = 1, nx

temp = u(i,j)
temp2 = u2(i,j)
jny2 = j+nyd2
u(i,i) =u(i,jny2)

u2(i,j) =u2(i,.jny2)

u2(i,jny2) =temp2
225 u(i,jny2) = temp
220 continue

c
c end split2 routne
c
#ifdef cray

call cfft2d(l,nx,ny,l. ,u,l,md,u,l,md, table,ntableI
1 work,nwork)

call cfft2d(l,nx,ny,l. ,u2,l,md,u2,l,md,table,ntable,
1 work,nwork)

#else
#ifdef sgi

call cfft2d(-l,nx,ny,u,md,wffl)
call cfft2d(-l,nx,ny,u2,md,wffl)

#else
call f2t2d(nx,ny,u,md,u,md,wffl,wff2,work, opy)
call f2t2d(nx,ny,u2,md,u2,md,wffl,wff2,work,cpy)

#endif
#endi f

endif
c
c Propage zl distance in front of the medium
c

15



if (abs(zst) .gt. l.e-30) then
do 70 i = 1, fly

do 70 j*= 1, nx
u2(j,i) =u2(j,i) * exp((phX(j)+phY(i))*zst)

70 u(j,i) =u(j,i) * exp((phX(j)+phY(i))*zst)
endif

#ifdef polar
optconst = -2.*Cwnur*wid)**2*isig*e2n*refn0/(l.+couple)

#esle
.optconst = -4.*(wnu*wid)**2*isig*e2n*refn/(l.+couple)

#endif
phzinit =optconst*0.25*zinit

c

c write the initial fields
C

write(3,rec=l) nx, fly
write(7,rec=l) nx, iiy
koo3 =1
if (ans2 .eq. 'n') then

do 65 i =1, ntot-7, 8
koo3 = koo3 + 1
write(7,rec=koo3) (u2(rnod(i+k,nx)il, (i+k)/nx+l) ,k=-l,6)

65 write(3,rec=koo3) (u(rod(i+k~nx)+l, Ci+k)/nx+l),k=-l,6)
else

#ifdef cray
call cfft2d(-l,nx,ny,dntot,u, l,rnd,u, l,rd, table,ntable,

1 work,nwork)
call cfft2d(-l,nx,ny,dntot,u2,l,md,u2,l,md,table,ntable,

1 work,nwork)
#else
#ifdef sgi

call cfft2d(l,nx,ny,u,rnd,wffl)
call cscal2d(nx,ny,dntot,u,nd)
call cfft2d(l,nx,ny,u2,md,wffl)
call cscal2d(nx,ny,dntot,u2,md)

#else
call f2t2b(nx,ny,u,rnd,u,md,wffl,wff2,work,cpy)
call f2t2b(nx,ny,u2,ind,u2,rnd,wffl,wff2,work,cpy)
do 279 i = 1, fly

do 279 j 1, nx
u2(I,i) =dntot*u2(j,i)

279 u(I,i) = dntot*u(i,i)
#endif
#endif

call hdfig2(filnarn4,phzinit,rlv,uand,nx,ny,0,work,ntot,2)
call hdfjrng2(filnam24,phzinit,rlv,u2,md,nx,ny,0,work,ntot,2)

#ifdef cray
call cfft2d(l,nx,ny,l. ,u,l,rnd,u,l,rd,table,ntable,

1 work,nwork)
call cfft2d(l,nx,ny,l. ,u2,l,md,u2,l,rnd,table,ntable,

1 work,nwork)
#else
#ifdef sgi

call cfft2d(-l,nx..ny,u,md,wffl)
call cfft2d(-l,nx,ny,u2,md,wffl)

#else
call f2t2d(nx,ny,u,md,u,md,wffl,wff2,work,cpy)
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call f2t2d(nx,ny,u2,ind,u2,rnd,wffl,wff2,work,cpy)
#endif
#endif

endif
energ = 0.
energ2 = 0.
do 60 i =1, fly

do 60 j =1, nx
energ2 =energ2 + real(u2(j,i)*conjg(u2Cj,i)))

60 energ = energ + real~u(j,i)*conjg(u(j,i)))
write (6, *) zprop, energ*dntot, energ2*dntot

C

c Start the split step method: linear part*nonlinear part*linear part
C

roptnon =optconst*delz
optnon = cpxi*roptnon
roptnon = float(majlp) * roptnon
do 120 i = 1, ipr
if (iflag .eq. 1) then

do 113 k =1, fly
do 113 jj 1, nx
u2(jj,k) =u2(jj,k) * phlin(jj,k)

113 u(jj,k) = u(jj,k) * phlin(jj,k)
zprop = zprop + delz*majlp
else

do 110 j =1, majip
zprop =zprop + delz

C

c linear half step

do 103 k = 1, fly
do 103 jj 1, fix
u2(jj,k) =u2(jj,k) * phlin(jj,k)

103 u(jj,k) = u(jj,k) * phlin(jj,k)
#ifdef cray

call cfft2d(-l,nx,ny,dntot,u, 1,md,u, l,md, table,ntable,
1 work,nwork)

call cfft2d(-l,nx~ny,dntot,u2,l,md,u2, l,rd,table,ntable,
1 work,nwork)

#else
#ifdef sgi

call cfft2d(1,nx,ny,u,md,wffl)
call cscal2d(nx,ny,dntot,u,md)
call cfft2d(1,nx,ny..u2,md,wffl)
call cscal2d(nx,ny,dntot,u2,md)

#else
call f2t2b(nx,ny,u,rnd,u,md,wffl,wff2,work,cpy)
call f2t2b(nx,ny,u2,rnd,u2,md,wffl~wff2,work, cpy)
do 179 ii = 1, fly

do 179 ji = 1, nx
u2(ji,ii) =dntot*u2(ji,ii)

179 u(ji,ii) =dntot*u(ji,ii)

#endif
#endif
c
c nonlinear full step
c
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do 100 k =1, fly
do 100 jj = 1, nx
temp =u(jj,k)*conjg(u(jj,k))
teinp2 =u2(jj,k)*conjg(u2(jj,k))*pratio
u2(jj,k) = u2(jj,k)*cexp(optnon*(temp2+couple*temp))

100 u(jj,k) = u(jj,k)*cexp(optnon*(tempicouple*temp2))
c dem =(1.,0.d0) + optnon*u(k)*conjg(u(k))
c 100 u(k) = u(k) * ((-1.,0.) + (2.,0.)/dem)**2
C

c linear half step
C

#ifdef cray
call cfft2d(l,nx,ny,l. ,u,1,md,u,1,md,table,ntable,

1 work,nwork)
call cfft2d(l,nx.ny,l. ,u2,1,md,u2,1,xnd,table,ritable,

1 work,nwork)
#else
#ifdef sgi

call cfft2d(-1,nx..ny,u,md,wffl)

#elsecall cfft2d(-l,nx.ny,u2,nid,wffl)
c al#e l s en y u m ~ ~ m ~ f l ~ f 2 w o k c y
call f2t2d(nx,ny,u,md,u,md,wffl,wff2,work, cpy)
calftenxnyudd2rdiflwf2wrkcy

#endif

do 105 k = 1, fly
do 105 jj 1, nx
u2(jj,k) =u2(11,k) * phlin(ij,k)

105 u(ji,k) = u(jj,k) * phlin(ii,k)
110 continue

endif
c
c output field distributions
C

energ =0.

do 116 k =1, ny
do 116 jj = 1, nx

116 energ = energ + real(u(jj,k)*conjg(u(jj,k)))
energ2 = 0.

do 316 k = 1, ny
do 316 jj = 1, nx

316 energ2 = energ2 + rea1(u2(jj,k)*conjg(u2(jj,k)))
if (ans2 .eq. In') then
do 117 k = 1, ntot-7, 8

koo3 = koo3 + 1
write(7,rec=koo3) (u2(mod(k+kO,nx)+1, (k+kO)/nx+l) ,kO=-l,6)

117 write(3,rec=koo3) (u(mod(k+kO,nx)+1, (k+kO)/nx+l),kO=-l,6)
else

#ifdef cray
call cfft2d(-l,nx,ny,dntot,u, l,rnd,u, l,nd, table,ntable,

1 work,nwork)
call cfft2d(-l,nx,ny,dntot,u2,1,md,u2, l,md,table,ntable,

1 work,nwork)
#else
#ifdef sgi

call cfft2d(1,nx,ny,u,md,wffl)
call cscal2d(nx,ny,dntot,u,md)
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call cfft2d(l,nx,ny,u2,md,wffl)
call cscal2d(nx,ny,dntot,u2,nd)

#else
call f2t2b(nx,ny,u,rnd,u,md,wffl,wff2,work,cpy)
call f2t2b(nx,ny,u2,ind,u2,md,wffl,wff2,work,cpy)
do 379 ii = 1, fly

do 379 ii = 1, nx
u2(ji,ii) = dntot*u2(ji,ii)

379 u(ji,ii) = dntot*u(ji,ii)
#endif
#endif
c
c Substract a reference phase
c

refph = mod(phzinit+roptnon*float(i) ,pi2)
refph2 = mod(phzinit+roptnon*pratio**float(i) ,pi2)
write(6,129) refph, refph2

129 formatC' max. nonlinear reference phase = ',e14.7)
call hdf-img2(filnam4,refph,rlv,u,md,nx,ny,i,work,ntot,2)
call hdf-img2(filnam24,refph2,rlv,u2,md,nx,ny,i,work,ntot,2)

#ifdef cray
call cfft2d(l,nx,ny,l. ,ull,ind,u,1,md,table,ntable,

1 work,nwork)
call cfft2d(l~nx,ny,l. ,u2,1,md~u2,l,md,table,ntable,

1 work,nwork)
#else
#ifdef sgi

call cfft2d(-1,nx,ny,u,md,wffl)
call cfft2d(-l,nxny,u2,md,wffl)

#else
call f2t2d(nx,ny,u,md,u,md,wffl,wff2,work, cpy)
call f2t2d(nx,ny,u2,md,u2,md,wffl,wff2,work,cpy)

#endif
#endif

endif
120 write(6,*) 4.*zprop, energ*dntot, energ2*dntot

if (ans2 .eq. 'y') then
do 217 k = 1, ntot-7, 8

koo3 = koo3 + 1
write(7,rec=koo3) (u2(mod(k+kO,nx)+l, (k+kO)/nx+l) ,kOz=-l,6)

217 write(3,rec=koo3) (u(mod(k+kO,nx)+l, (k+kO)/nx+l),kO=-l,6)
endif

c
c Propage zdist+z2-zprop distance behind the medium
c

close (3)
close (7)
stop
end

Fig. 8. An example of the input file non2beam.dat in which the data from the user are bold-
faced.

DATA FOR NON2BEAM.F enter data after 'this vertical line->
Name of the file containing E-field data for beaml Igaus.d
Name of the file containing E-field data for beam2 Igaus.d
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Is the above file produced by non2beam.f? (y/n) In
Frame # to use if the previous answer is y (default 1) 1
Initial propagation distance if the previous answer is y (default 0) 1
delta n (n2*EO**2/nO) I1.e-4
Wavelength in meter (default l.e-6)
Radial size wO in meter (default l.e-4)
Resolution for x range (<1 for high resolution, default 1)
Resolution for y range (<1 for high resolution, default 1) 1
Name of the file containing FT(field) for beaml (default ft.d) I
Name of the file containing FT(field) for beam2 (default ft2.d) I
Linear refractive index nO at the carrier freq (default 1) 1
Sign of nonlinearity (-1 or +1) (default -1)
Max. Length of medium in zO==pi*nO*wO**2/ wavelength Ii.
relative error (<<) (default l.e-3)
Output images in hdf format? (y/n) ly
If y, give name of the hdf file for beaml (default ifr.hdf) I
If y, give name of the hdf file for beam2 (default ifr2.hdf) ]
No. of frames ipr write to file (default 5)
Distance of the beam waist in front of the medium (in ZO) 10.
Power of beaml / Power of beam2 I1.
Coupling coef. between the two beams ]0.

The explanations for the input file input.dat in Fig. 8 are as follows:
line 1: Name of the file contains input electric field data for the first beam or circularly

polarized component in near field or in far field.
line 2: Name of the file contains input electric field data for the second beam or

circularly polarized component in near field or in far field.
line 3: Enter 'n' for near field data or 'y' for far field data which is the output format of

non2beam.F. This option is for continuous execution of the program.
line 4: If data for line 3 is 'y', enter the frame number to pick from the input field data

which may contain data at different propagation distance.
line 5: If data for line 3 is 'y', enter the propagation distance corresponding to the frame

picked.

line 6: Maximum change in refractive index due to nonlinearity.
line 7: Wavelength of the carrier.
line 8: Scale factor in the transverse dimensions.
line 9: Resolution in x dimension.

line 10: Resolution in y dimension.
line 11: Name of the file contains the far field data for the first beam which may include

data for all frames or only the data for the last frame when output in HDF images
is specified.

line 12: Name of the file contains the far field data for the second beam which may
include data for all frames or only the data for the last frame when output in HDF
images is specified.

line 13: Linear refractive index.
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4 'P p

line 14: Sign of the nonlinearity.

line 15: Length of the nonlinear medium.

line 16: Error control parameter.

line 17: Enter 'y' for output data in HDF format.

line 18: If answer in line 17 is 'y', enter name of the file containing the HDF images for
the first beam.

line 19: If answer in line 17 is 'y', enter name of the file containing the HDF images for
the second beam.

line 20: Number of output frames written to the far field data files or HDF images files.
line 21: Propagation distance in front of the nonlinear medium.
line 22: Power ratio of the first beam and the second beam.
line 23: The ratio between self-phase modulation and cross-phase modulation.
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